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Abstract
An interface fluctuating between two different, parallel, and competing
walls separated by distance L is analysed within the framework of the one-
dimensional restricted solid-on-solid model. For finite L-values the analytic
expressions representing scaling behaviour of the free-energy density and
the parallel correlation length are derived and discussed. For infinite wall
separation the interface can be located either at finite or at infinite distance
from a selected wall. We find that both first- and second-order transitions
between these two configurations are possible.

PACS numbers: 68.08.Bc, 68.18.Jk

1. Introduction

The second-order wetting transition taking place in a semi-infinite system bounded by a planar
substrate is related to non-analytic behaviour of the surface free-energy density [1–3]. Upon
varying the state of the system along the bulk α–β coexistence line, the thickness of the β-like
layer entering between the substrate and the phase α becomes macroscopically large at the
transition; the α–β interface depins continuously from the substrate.

If the system is made finite along the direction perpendicular to the substrate by adding
a second wall, parallel to the first one, and placed at a distance L from it (the slit geometry)
then the properties of the system become modified with respect to the semi-infinite case
[4–6]. In particular, the surface free-energy density is analytic and additionally depends on
the distance L. The walls bounding the system can by chosen in such a way that the lower
one preferentially adsorbs phase β and the upper one adsorbs phase α (see figure 1). Such
systems were studied intensively [7] using mean-field theory [8, 9], computer simulations
[10, 11] and exactly solvable models [12]. In particular, the finite-size scaling functions for
the surface free-energy density and for the longitudinal correlation length were found using
the one-dimensional solid-on-solid (SOS) model [12] in the case when the interactions of the
interface with each wall were identical.

The main purpose of this paper is to analyse the case when the interaction of the interface
with each wall is different. We want to see to what extent the difference in wall properties
influences—qualitatively and quantitatively—the behaviour of the system.
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Figure 1. The one-dimensional RSOS model. The position of the α–β interface above the ith site
is denoted by li . The walls are placed at z = 0 and z = L.

For this purpose we analyse the one-dimensional SOS model [12–19], see figure 1, in
which the position of the interface separating the phases α and β is the only relevant degree
of freedom. It is specified by the set of discrete variables ln, where n = 1, 2, . . . , N measures
the discrete distance along the one-dimensional walls located at z = 0 and z = L. Each of the
N variables ln can take L + 1 values: ln ∈ {0, . . . , L}. The interaction of the interface with the
walls is described by the contact potential

�({li}i=1,...,N ) =
N∑

n=1

V (ln) =
N∑

n=1

[−W1δln,0 − W2δln,L

]
(1)

which is parametrized by the interaction energies W1 > 0 and W2 > 0 at the lower and upper
walls, respectively. The Hamiltonian of the SOS model

H({li}) =
N∑

n=1

[J |ln − ln+1| + V (ln)] (2)

contains—in addition to the potential energy—the term describing the energetic cost due to
corrugation of the interface; J > 0 is a coupling parameter corresponding to the surface
tension. We impose the periodic boundary conditions along the walls, i.e., lN+1 = l1.
Additionally, we assume that the interfacial positions at the neighbouring sites differ at most
by one, i.e., |lk+1 − lk| ∈ {0, 1}. This assumption means that the interface does not fluctuate too
violently and it corresponds to the condition |∇�|2 � 1 often imposed on continuum models.
In this way one arrives at the so-called restricted solid-on-solid model (RSOS) [15] which is
the object of our analysis.

We recall that the RSOS model of a semi-infinite system bounded by a single wall at
z = 0 and described by the Hamiltonian

H∞/2({li}) =
N∑

n=1

[
J |ln − ln+1| − Wδln,0

]
(3)

exhibits the second-order wetting transition [15, 19]. It takes place at the wetting temperature
TW given implicitly by the equation [14, 15]

w0 = 1 + 2j0

1 + j0
(4)

where w0 = exp(W/kBTW) and j0 = exp(−J/kBTW). The average position of the interface
〈lk〉 diverges at the wetting temperature as 〈lk〉 ∼ |T − TW |−1 (βS = 1), the free-energy
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density is non-analytic, i.e., its second derivative with respect to temperature is discontinuous
(αS = 0), and the height–height correlation length ξ‖ diverges as ξ‖ ∼ |T − TW |−2 (ν‖ = 2).
The above results represent the correct low-temperature limit of the two-dimensional Ising
model properties [16, 17].

In the model of a slit considered in this paper there are two characteristic temperatures
TW1 and TW2. Each of them corresponds to critical wetting taking place in an appropriate
semi-infinite system bounded by a single wall.

2. The transfer matrix method

A very convenient way of analysing the RSOS model is provided by the transfer-matrix method
[14]. In the present case the transfer matrix £ has dimension L + 1 and its elements take the
form

〈m|£|n〉 = exp

[
− 1

kBT

(
J |m − n| +

1

2
V (m) +

1

2
V (n)

)]
. (5)

The transfer matrix is symmetric £ = £T and there exists an orthonormal basis {|�i〉}i=0,...,L

consisting of its eigenvectors. The real eigenvalues λi are numbered in such a way that
λ0 � λ1 � · · · � λL. For periodic boundary condition the partition function Z(T ,N) can be
evaluated in the standard way

Z(T ,N) =
∑
{li}

e− H({li })
kB T =

∑
{li }

N∏
n=1

〈ln|£|ln+1〉 =
L∑

l1=0

〈l1|£N |l1〉 =
L∑

k=0

(λk)
N (6)

and leads in the thermodynamic limit N → ∞ to the free energy per site f

f ≡ −kBT lim
N→∞

[
1

N
log Z(T ,N)

]
= −kBT log λ0 (7)

together with the parallel correlation length ξ‖

ξ‖ =
[

log

(
λ0

λ1

)]−1

(8)

and the mean location of the interface

〈lk〉 ≡ lim
N→∞

1

Z(T ,N)

∑
{li }

lk e− H({li })
kBT =

L∑
lk=0

lk|�0(lk)|2 (9)

where �0(l) is the lth component of the eigenvector corresponding to the largest eigenvalue λ0.
The mean position of the interface 〈l〉 ≡ 〈lk〉 does not depend on the site number k. It follows
from equation (9) that the function P(l) = |�0(l)|2 represents the probability of finding the
interface at distance l from the lower wall. We analyse its properties in the next chapter.

3. The solution of the RSOS model and the scaling functions

The RSOS model constraint |lk+1 − lk| ∈ {0, 1} and the form of the contact potential �({lk}),
see equation (1), lead to the following expressions for the transfer matrix elements

〈m|£|n〉 =
{

j |m−n|w
1
2 δm,0+ 1

2 δn,0

1 w
1
2 δm,L+ 1

2 δn,L

2 for |m − n| ∈ {0, 1}
0 otherwise

(10)

where w1 = eW1/kBT , w2 = eW2/kBT and j = e−J/kBT . The solutions of the eigenvalue
equation £|�k〉 = λk|�k〉 can be found along the lines described in [12, 15]. Both the
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Figure 2. The contour 
 on which the values of parameters zk are located.

eigenvalues λk and the eigenvectors �k(l) are obtained as functions parametrized by (L + 1)

auxiliary variables zk which are roots of the equation det[A(z)] = 0, where A is a 2 ×2 matrix

A =
[
w1(1 + j e−z) − (1 + 2j cosh z) w1(1 + j ez) − (1 + 2j cosh z)

(w2(1 + j ez) − (1 + 2j cosh z)) e−zL (w2(1 + j e−z) − (1 + 2j cosh z)) ezL

]
. (11)

The transfer matrix eigenvalues λk are given by the equation

λk = 1 + 2j cosh zk (12)

and the eigenvector �0(l) takes the form

�0(l) = c(l)
[
a0 e−z0l + b0 ez0l

]
(13)

where

c(l) =




w
−1/2
1 for l = 0

1 for l = 1, . . . , L − 1

w
−1/2
2 for l = L

.

The parameters a0 and b0 in equation (13) are determined by the equation A(z0)[a0, b0]T =
[0, 0]T and the normalization condition

∑L
l=0|�0(l)|2 = 1. Equation (12) implies that zk ∈ 
,

where the contour 
 is shown in figure 2. It follows from the condition zk ∈ 
 that

• for real zk ∈ [0,∞[ the eigenvalues λk � 1 + 2j ,
• for imaginary zk = i|zk|, where |zk| ∈ ]0, π[, the eigenvalues λk ∈ ]1 − 2j, 1 + 2j [,
• for complex zk = iπ + rk , where rk ∈ [0, +∞[, the eigenvalues λk � 1 − 2j .

The probability distribution P(l) = |�0(l)|2 takes—provided a0 �= 0 and b0 �= 0, see
equation (13)—the following form

P(l) = 4c(l)2|a0b0| cosh2(z0(l − l̄)) (14)

where

l̄ = 1

2z0
log

a0

b0
. (15)

The parameters a0 and b0 depend on the distance L between the walls and on parameter z0.
The probability distribution P(l) is either a concave or a convex function. This property
depends on the value of parameter z0 and changes at z0 = 0, i.e., for z0 → 0 along the
real axes the distribution P(l) is convex while for z0 → 0 along the imaginary axes it is
concave. Thus the condition z0 = 0 determines a characteristic temperature T � at which the
probability distribution P(l) turns from being convex to concave. In the case of equal wall
interaction energies W1 = W2 ≡ W—which was analysed by Privman and Švrakić [12]—
the temperature T � is equal to the wetting temperature TW given by equation (4). In order
to analyse the properties of the system in the vicinity of T � with the help of the analytical
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methods we assume that the wetting temperatures of the walls are close to each other, i.e.,
|TW1 − TW2|/TW1 � 1. Expanding the lhs of equation det[A(z)] = 0 (which determines
the set of variables zk) in small parameters τ1 = (T − TW1)/TW1, τ2 = (T − TW2)/TW2 and
z → 0, one obtains

z2 + µ1µ2 = (µ1 + µ2)z coth(Lz) (16)

where the parameters µ1 and µ2 are defined as

µk = wk(1 + j) − (1 + 2j)

jwk

≈ −akτk (17)

k ∈ {1, 2}. The constant parameters ak > 0 do not depend on the temperature. A
straightforward analysis of equation (16) shows that it has at most two roots which may
be real and positive; they are denoted as z0 and z1. The remaining roots z2, . . . , zL are always
imaginary. Whether the first two roots are real or imaginary depends on the values of µ1, µ2

and L. This implies, see equation (12), that there are only two eigenvalues which can be larger
than 1 + 2j

λi = 1 + 2j + jz2
i for zi → 0 (18)

i ∈ {0, 1}, while the remaining ones are always smaller than 1 + 2j .
In order to extract the scaling behaviour of the free-energy density and the parallel

correlation length it is convenient to introduce the scaling parameters xk ≡ −Lµk =
akτkL, y ≡ L2z2, and to rewrite equation (16) in the following way:

y + x1x2 + (x1 + x2)
√

y coth(
√

y) = 0. (19)

There are two solutions of the above equation which can be either positive or negative
depending on the values of the parameters x1, x2; they are denoted as y0(x1, x2) = L2z2

0
and y1(x1, x2) = L2z2

1. It follows from equation (18) that in the limit z0 → 0 the free-
energy density, equation (7), can be written as the sum of two terms f = f0 + δf , where
the L-independent term f0 = −kBT log(1 + 2j) represents the free-energy density of the free
interface, and the second term incorporates the interaction of the interface with the walls

δf = − kBTj

1 + 2j

y0(a1τ1L, a2τ2L)

L2
. (20)

Similarly, using equations (8) and (18) one can find the parallel correlation length in the limit
z0 → 0 and z1 → 0

ξ‖ = 1 + 2j

j

L2

y0(a1τ1L, a2τ2L) − y1(a1τ1L, a2τ2L)
. (21)

The two largest solutions of equation (19), i.e., y = y0(x1, x2) and y = y1(x1, x2), represent
the finite-size scaling functions. They are both analytic at the origin and after expanding in
powers of x1 and x2 one obtains

y0(x1, x2) = −(x1 + x2) + 1
3

(
x2

1 + x2
2 − x1x2

)
+ · · · (22)

and

y1(x1, x2) = −π2 − 2(x1 + x2) +
1

π2
(x1 + x2)

2 + · · · . (23)

In the range of model parameters where equations (22) and (23) are valid, i.e., for |τ1|L � 1 and
|τ2|L � 1, the finite-size contribution to the free-energy density (20) becomes proportional
to δf ∼ µ1+µ2

L
. The parallel correlation length (21) is finite and scales with the distance

L as ξ‖ ∼ L2. On the other hand, solving equation (19) for x1, x2 → −∞ one finds
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Figure 3. The scaling functions y0(x) and y1(x) for the case W1 = W2. The horizontal lines
correspond to the asymptotes y = −π2 and y = −4π2.

y0 = max
(
x2

1 , x
2
2

)
and y1 = min

(
x2

1, x
2
2

)
. This regime corresponds to the limit L → ∞

which will be discussed in the next section.
In the case of identical wall parameters W1 = W2 one has TW1 = TW2, x1 = x2, and

equation (19) reduces to the following form:(
x1 +

√
y tanh

(
1
2

√
y
)) (

x1 +
√

y coth
(

1
2

√
y
)) = 0. (24)

The two largest solutions of the above equation, y0(x1) and y1(x1), are implicitly given by the
following relations:

x1 = −√
y0 tanh

(
1
2

√
y0

)
for y0 > −π2 (25)

and

x1 = −√
y1 coth

(
1
2

√
y1

)
for y1 > −4π2. (26)

The plots of the above scaling functions are shown in figure 3 and reproduce the results already
derived by Privman and Švrakić [12].

In the case W1 �= W2, for fixed values of the wetting temperatures TW1, TW2, and the
distance L the reduced variables xk are parametrized by the temperature T only and are related
by the linear equation x2 = px1 + q , where p = a2TW1

a1TW2
and q = TW1−TW2

TW2
a2L. The plots of the

scaling functions y0(x1, px1 + q) and y1(x1, px1 + q) are shown in figure 4. From comparing
figures 4 and 3 one notes that the scaling functions y0 and y1 differ qualitatively in both
cases. If W1 = W2 then the difference (y0 − y1) → 0 for x1 → −∞ and—as was proved in
[12]—the correlation length (21) diverges exponentially with the distance L in this limit, i.e.,
ξ‖ ∼ µ−2

1 exp(|µ1|L) for µ1L � 1. For the W1 �= W2 case the difference y0 − y1 behaves
differently and one has limx1→−∞(y0 − y1) �= 0. One also notes that y0(x1 = 0) = 0 for
W1 = W2 while for the other case y0(x1, px1 + q) = 0 for x1 �= 0. The condition y0 = 0
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Figure 4. The scaling functions y0(x, px + q) and y1(x, px + q) for the case W1 �= W2; p = 1.2
and q = −2. The horizontal lines correspond to the asymptotes y = −π2 and y = −4π2.

implies z0 = 0 and determines the temperature T � at which the probability distribution P(l)

changes its convexity. Thus for W1 = W2 the temperature T � = TW1 = TW2 while for
W1 �= W2 one has T � �= TW1 and T � �= TW2. It follows from equation (19) that T = T �

corresponds to x1 + x2 + x1x2 = 0. From this equation the expression for T � is obtained which
for 1/L � 1 takes the form

T � = max

[
TW1

(
1 − 1

a1L

)
, TW2

(
1 − 1

a2L

)]
+ O

(
1

L2

)
. (27)

It follows from equation (20) that for T = T � the finite-size contribution to the free-energy
density δf vanishes. Simultaneously the effective interaction between the walls mediated
by the fluctuations vanishes. The characteristic temperature T � is shifted with respect to the
larger of the wetting temperatures T +

W = max(TW1, TW2). This shift—for 1/L � 1—scales
with the distance L according to the following relation: (T +

W − T �)/T +
W ∼ L−1. Because for

the present model the critical exponent βS = 1 this result is in accordance with the general
prediction for a slit with competing walls [9].

4. The phase diagram for the case L = ∞
In the limiting case L = ∞ there exists an infinite number of imaginary solutions to
equation (16) which are contained in the segment [0, iπ] ⊂ 
. However, we are interested in
real and positive values of z ∈ R

+. In this case equation (16) simplifies to the following form:

(z − µ1)(z − µ2) = 0. (28)

The above equation (28) has no solution if max(µ1, µ2) < 0. If µ1 � µ2 and µ1 > 0 then
z0 = µ1. For z0 = µ1 the parameter b0 vanishes and the probability distribution P(l) decays
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Figure 5. The phase diagram in the L = ∞ case. The solid line indicates the first-order transition
points. The vertical dashed line is the second-order transition line. Upon crossing the horizontal
dotted line towards negative values of µ2 the correlation length ξ‖ becomes infinite while the
average distance of the interface from the lower wall remains infinite.

exponentially: P(l) = c2(l)|a0|2 e−2lµ1 . In this case the average distance of the interface from
the lower wall is finite. If µ2 > µ1 and µ2 > 0 then z0 = µ2. In this case the distribution
P(l) is given by equation (14), i.e., P(l) = 4c2(l)|a0b0| cosh2(µ2(l − l̄)) for a finite value
of l̄, see equation (15), and the mean distance 〈l〉 is infinite. Thus the line µ1 = µ2 (the
solid line in figure 5) corresponds to the first-order transitions at which the interface unbinds
from the lower wall and becomes pinned to the upper one. On the other hand, upon crossing
the line µ1 = 0, µ2 < 0 (the dashed line in figure 5) from µ1 → 0+, where the probability
distribution is equal to P(l) = c2(l)|a0|2 e−2lµ1 , the mean value 〈l〉 diverges continuously;
it corresponds to the second-order interface unbinding transition taking place at the wetting
temperature of the lower wall TW1. Thus upon changing the model parameters µ1 and µ2

both first- and second-order transitions are possible. Our conclusion about the existence of
the first-order transitions in the limiting case L = ∞ recalls the prediction of Forgacs et al
[13] where the first-order interface unbinding transition in a semi-infinite geometry bounded
by a single substrate and containing the line of defects at the distance L from it was found
in the limit L → ∞. However, it should be noted that upon varying only the temperature T
in the regime T → TW1 and T → TW2 at fixed values of the wetting temperatures TW1 and
TW2 (or, equivalently, at fixed values of the Hamiltonian parameters W1,W2 and J ) only the
second-order unbinding transition is possible and it takes place at T = TW1. It corresponds to
the wetting transition in the single-wall case.

Using equations (8) and (16) one can also find the parallel correlation length which takes
the form

ξ‖ = 1 + 2j

j

∣∣µ2
1�(µ1) − µ2

2�(µ2)
∣∣−1

(29)

where � is the Heaviside function. The parallel correlation length ξ‖ diverges both at the
first-order transition line µ1 = µ2, where ξ‖ ∼ |µ1 −µ2|−1, and at the second-order transition
line, where ξ‖ ∼ µ−2

1 . It is infinitely large for µ1 � 0 and µ2 � 0 (see figure 5).

5. Summary

We have presented the analytic solution of the one-dimensional RSOS model of an interface
fluctuating between two different, flat, parallel and competing walls separated by distance L.
Each of the walls corresponds in the semi-infinite case to the second-order wetting transition
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characterized by the appropriate wetting temperature, i.e. TW1 and TW2. We have investigated
the influence of the finite size of the system on the free-energy density and on the height–height
correlation length for the case when the two wetting temperatures are close to each other. We
found the scaling behaviour of these quantities and the corresponding scaling functions which
depend on temperature via the scaling variables (T − TW1)L, (T − TW2)L. In the limiting
case L = ∞ we have constructed the phase diagram in which regions corresponding to finite
and infinite values of the mean distance of the interface from the lower wall are indicated.
They are separated by transition lines which can be either first- or second-order depending on
the choice of system parameters.
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